game - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

game - перевод на русский

WIKIMEDIA DISAMBIGUATION PAGE
GAMES; GAME; Games (song); Games (disambiguation); GAMES (disambiguation); Game (album); Game (film); Games (album); Game (song)

game         
  • [[Parcheesi]] is an American adaptation of a [[Pachisi]], originating in India.
  • checkers]] pieces.
  • Ancient Egyptian gaming board inscribed for [[Amenhotep III]] with separate sliding drawer, from 1390 to 1353 BC, made of glazed faience, dimensions: 5.5 × 7.7 × 21 cm, in the [[Brooklyn Museum]] (New York City)
  • Gaming table, circa 1735, wood and ivory marquetry, overall: 78.7 x 94 x 54.6 cm, [[Cleveland Museum of Art]] ([[Cleveland]], Ohio, US)
  • ''Playing Cards'', by [[Theodoor Rombouts]], 17th century
  • Students using dice to improve numeracy skills. They roll three dice, then use basic math operations to combine those into a new number which they cover on the board. The goal is to cover four squares in the row.
  • Courtauld nstitute of Art]] (London)
  • Children's Games]]'', 1560, [[Pieter Bruegel the Elder]]
  • ''The Card Players'' by [[Lucas van Leyden]] (1520) depicting a multiplayer card game
  • 1475–1480}}, paper with pen, ink, opaque paint, glazes, applied silver and gold, in the [[Metropolitan Museum of Art]] from New York City
  • [[Tug of war]] is an easily organized, impromptu game that requires little equipment.
  • alt=
STRUCTURED FORM OF PLAY
Games; Unclassified game; Single-player game; Multiplayer Games; Online multi-player gamers; Multiplayer gaming; Multi player game; Multiplayer games; Multiple players; Network gaming; Game sites; Multi player gaming; Multi-player gaming; Lan games; Network play; Multiplayer game; A game; Gaming league; Multi Player; Game rule; Physical game; Multi-player game; Multiple-player game; Multi- and single-player games; Multiplayer and single-player games

[geim]

общая лексика

дичь

[компьютерная] игра, игровая программа

развлекательная программа, часто с сопутствующими аппаратными средствами для организации интерактивного взаимодействия с играющим

игральный

играть

игровой вычислительный

партия

этология

игра

нефтегазовая промышленность

замысел

план

прилагательное

[geim]

общая лексика

смелый

боевой

задорный

готовый (на что-л.)

полный желания

энтузиазма

искалеченный

парализованный (о ноге, руке)

боевой, задорный

охотно готовый сделать что-л.

искалеченный, парализованный (о руке, ноге)

существительное

[geim]

общая лексика

игра

спортивные игры

состязания

соревнования

партия

гейм

количество очков

необходимое для выигрыша

гейм (теннис)

счёт (во время игры)

дичь

мясо диких уток

куропаток и т. п.

объект преследования

игры

развлечение, забава

замысел, проект, дело

мясо диких уток, куропаток, зайчатина и т. п.

спорт

стиль игры

игра, партия

разговорное выражение

(рискованная) игра

(рискованное) предприятие

замысел

план

проект

дело

обыкн. уловка

увёртка

хитрость

«фокус»

шутка

потеха

диалектизм

развлечение

забава

синоним

plaything

глагол

[geim]

общая лексика

играть в азартные игры

game         
  • [[Parcheesi]] is an American adaptation of a [[Pachisi]], originating in India.
  • checkers]] pieces.
  • Ancient Egyptian gaming board inscribed for [[Amenhotep III]] with separate sliding drawer, from 1390 to 1353 BC, made of glazed faience, dimensions: 5.5 × 7.7 × 21 cm, in the [[Brooklyn Museum]] (New York City)
  • Gaming table, circa 1735, wood and ivory marquetry, overall: 78.7 x 94 x 54.6 cm, [[Cleveland Museum of Art]] ([[Cleveland]], Ohio, US)
  • ''Playing Cards'', by [[Theodoor Rombouts]], 17th century
  • Students using dice to improve numeracy skills. They roll three dice, then use basic math operations to combine those into a new number which they cover on the board. The goal is to cover four squares in the row.
  • Courtauld nstitute of Art]] (London)
  • Children's Games]]'', 1560, [[Pieter Bruegel the Elder]]
  • ''The Card Players'' by [[Lucas van Leyden]] (1520) depicting a multiplayer card game
  • 1475–1480}}, paper with pen, ink, opaque paint, glazes, applied silver and gold, in the [[Metropolitan Museum of Art]] from New York City
  • [[Tug of war]] is an easily organized, impromptu game that requires little equipment.
  • alt=
STRUCTURED FORM OF PLAY
Games; Unclassified game; Single-player game; Multiplayer Games; Online multi-player gamers; Multiplayer gaming; Multi player game; Multiplayer games; Multiple players; Network gaming; Game sites; Multi player gaming; Multi-player gaming; Lan games; Network play; Multiplayer game; A game; Gaming league; Multi Player; Game rule; Physical game; Multi-player game; Multiple-player game; Multi- and single-player games; Multiplayer and single-player games
сущ.
1) игра, соревнование;
2) по Г. Миду - вторая, соревновательная стадия в развитии личности индивида, на которой ребенок учится играть одновременно несколько ролей.
game         
  • [[Parcheesi]] is an American adaptation of a [[Pachisi]], originating in India.
  • checkers]] pieces.
  • Ancient Egyptian gaming board inscribed for [[Amenhotep III]] with separate sliding drawer, from 1390 to 1353 BC, made of glazed faience, dimensions: 5.5 × 7.7 × 21 cm, in the [[Brooklyn Museum]] (New York City)
  • Gaming table, circa 1735, wood and ivory marquetry, overall: 78.7 x 94 x 54.6 cm, [[Cleveland Museum of Art]] ([[Cleveland]], Ohio, US)
  • ''Playing Cards'', by [[Theodoor Rombouts]], 17th century
  • Students using dice to improve numeracy skills. They roll three dice, then use basic math operations to combine those into a new number which they cover on the board. The goal is to cover four squares in the row.
  • Courtauld nstitute of Art]] (London)
  • Children's Games]]'', 1560, [[Pieter Bruegel the Elder]]
  • ''The Card Players'' by [[Lucas van Leyden]] (1520) depicting a multiplayer card game
  • 1475–1480}}, paper with pen, ink, opaque paint, glazes, applied silver and gold, in the [[Metropolitan Museum of Art]] from New York City
  • [[Tug of war]] is an easily organized, impromptu game that requires little equipment.
  • alt=
STRUCTURED FORM OF PLAY
Games; Unclassified game; Single-player game; Multiplayer Games; Online multi-player gamers; Multiplayer gaming; Multi player game; Multiplayer games; Multiple players; Network gaming; Game sites; Multi player gaming; Multi-player gaming; Lan games; Network play; Multiplayer game; A game; Gaming league; Multi Player; Game rule; Physical game; Multi-player game; Multiple-player game; Multi- and single-player games; Multiplayer and single-player games
game I 1. noun 1) игра to play a good (poor) game - быть хорошим (плохим) игроком - play the game 2) sport игра, партия a game of tennis - партия в теннис; гейм 3) pl. соревнования; игры 4) развлечение, забава what a game! - как забавно! 5) шутка; to have a game with - дурачить кого-л. - make game of - speak in game 6) замысел, проект, дело 7) уловка, увертка, хитрость, 'фокус' none of your games - оставьте эти штуки, без фокусов the game is up - 'карта бита', дело проиграно the game is not worth the candle - игра не стоит свеч two can play at that game - посмотрим еще, чья возьмет to have the game in one's hands - быть уверенным в успехе this game is yours - вы выиграли Syn: see plaything 2. adj. 1) смелый; боевой, задорный 2) охотно готовый сделать что-л. to be game for anything - быть готовым на все; ничего не бояться 3. v. играть в азартные игры - game away II noun 1) дичь - fair game - big game 2) мясо диких уток, куропаток, зайчатина и т. п. III adj. искалеченный, парализованный (о руке, ноге)

Определение

Игр теория

раздел математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. При этом под конфликтом понимается явление, в котором участвуют различные стороны, наделённые различными интересами и возможностями выбирать доступные для них действия в соответствии с этими интересами. Отдельные математические вопросы, касающиеся конфликтов, рассматривались (начиная с 17 в.) многими учёными. Систематическая же математическая теория игр была детально разработана американскими учёными Дж. Нейманом и О. Моргенштерном (1944) как средство математического подхода к явлениям конкурентной экономики. В ходе своего развития И. т. переросла эти рамки и превратилась в общую математическую теорию конфликтов. В рамках И. т. в принципе поддаются математическому описанию военные и правовые конфликты, спортивные состязания, "салонные" игры, а также явления, связанные с биологической борьбой за существование.

В условиях конфликта стремление противника скрыть свои предстоящие действия порождает неопределённость. Наоборот, неопределённость при принятии решений (например, на основе недостаточных данных) можно интерпретировать как конфликт принимающего решения субъекта с природой. Поэтому И. т. рассматривается также как теория принятия оптимальных решений в условиях неопределённости. Она позволяет математизировать некоторые важные аспекты принятия решений в технике, сельском хозяйстве, медицине и социологии. Перспективен подход с позиций И. т. к проблемам управления, планирования и прогнозирования.

Основным в И. т. является понятие игры, являющееся формализованным представлением о конфликте. Точное описание конфликта в виде игры состоит поэтому в указании того, кто и как участвует в конфликте, каковы возможные исходы конфликта, а также кто и в какой форме заинтересован в этих исходах. Участвующие в конфликте стороны называются коалициями действия; доступные для них действия - их стратегиями; возможные исходы конфликта - ситуациями (обычно каждая ситуация понимается как результат выбора каждой из коалиций действия некоторой своей стратегии); стороны, заинтересованные в исходах конфликта, - коалициями интересов; их интересы описываются предпочтениями тех или иных ситуаций (эти предпочтения часто выражаются численными выигрышами). Конкретизация перечисленных объектов и связей между ними порождает разнообразные частные классы игр.

Если в игре имеется единственная коалиция действия, то стратегии этой коалиции можно отождествить с ситуациями и далее больше уже о стратегиях не упоминать. Такие игры называются нестратегическими. Класс нестратегических игр весьма обширен. К их числу относятся, в частности, кооперативные игры (см. Кооперативная теория игр).

Примером нестратегической (кооперативной) игры может служить простая игра, состоящая в следующем. Множеством ситуаций являются в ней всевозможные распределения (дележи) между игроками некоторого количества однородной полезности (например, денег). Каждый делёж описывается теми суммами, которые при этом получают отдельные игроки. Коалиция интересов называется выигрывающей, если она может даже в условиях противодействия со стороны всех остальных игроков присвоить и разделить между своими членами всю имеющуюся полезность. Все коалиции, не являющиеся выигрывающими, совсем не могут присвоить какой-либо доли полезности. Такие коалиции называются проигрывающими. Естественно считать, что выигрывающая коалиция предпочитает один делёж другому, если доля каждого из её членов в условиях первого дележа больше, чем в условиях второго. Проигрывающие же коалиции не могут сравнивать дележи по предпочтительности (это условие также вполне естественно: коалиция интересов, которая сама не в состоянии добиться ничего, вынуждена соглашаться на любой делёж и лишена возможности выбора между дележами).

Если в игре имеется более одной коалиции действия, то игра называется стратегической. Важный класс стратегических игр составляют бескоалиционные игры, в которых коалиции действия совпадают с коалициями интересов (они называются игроками), а предпочтения для игроков описываются их функциями выигрыша: игрок предпочитает одну ситуацию другой, если в первой ситуации он получает больший выигрыш, чем во второй.

Одним из простейших примеров бескоалиционной игры может служить "морра" в следующем своём варианте. Три игрока показывают одновременно 1 или 2 пальца каждый. Если все три игрока показывают одно и то же число, то выигрыш каждого равен нулю. В противном случае один из игроков показывает a ( = 1 или 2) и получает b из некоторого источника (например, из банка, образованного предварительными взносами), а два других игрока, показывающие одно и то же b ( ≠ a), не получают ничего.

Если в бескоалиционной игре участвуют два игрока, а значения их функций выигрыша в любой ситуации отличаются только знаками, то игра называется антагонистической игрой (См. Антагонистические игры); в ней выигрыш одного из игроков в точности равен проигрышу другого. Если в антагонистической игре множества стратегий обоих игроков конечны, то игра называется матричной игрой (См. Матричные игры) ввиду некоторой специфической возможности её описания.

В качестве другого примера бескоалиционной игры можно привести шахматы. В этой игре участвуют два игрока (белые и чёрные). Стратегия каждого из игроков есть мыслимое (хотя практически и не поддающееся детальному описанию) правило выбора в каждой возможной позиции некоторого хода, допускаемого движениями фигур. Пара таких правил (за белых и за чёрных) составляет ситуацию, которая полностью определяет протекание шахматной партии и в том числе её исход. Функция выигрыша белых имеет значение 1 на выигрываемых партиях, 0 на ничейных и - 1 на проигрываемых (такой способ начисления очков практически ничем не отличается от принятого в турнирной и матчевой практике). Функция выигрыша чёрных отличается от функции выигрыша белых лишь знаком. Из сказанного видно, что шахматы относятся к числу антагонистических и притом матричных игр. В шахматах стратегии не выбираются игроками до начала игры, а реализуются постепенно, ход за ходом. Это значит, что шахматы принадлежат к позиционным играм (См. Позиционные игры).

И. т. является нормативной теорией, тоесть предметом её изучения являются не столько сами модели конфликтов (игры), как таковые, сколько содержание принимаемых в играх принципов оптимальности, существования ситуаций, на которых эти принципы оптимальности реализуются (такие ситуации или множества ситуаций называются решениями в смысле соответствующего принципа оптимальности), и, наконец, способы нахождения таких ситуаций. Рассматриваемые в И. т. объекты - игры - весьма разнообразны, и пока не удалось установить принципов оптимальности, общих для всех классов игр. Практически это означает, что единого для всех игр истолкования понятия оптимальности ещё не выработано. Поэтому прежде чем говорить, например, о наивыгоднейшем поведении игрока в игре, необходимо установить, в каком смысле эта выгодность понимается. Все применяемые в И. т. принципы оптимальности при всём их внешнем разнообразии отражают прямо или косвенно идею устойчивости ситуаций или множеств ситуаций, составляющих решения. В бескоалиционных играх основным принципом оптимальности считается принцип осуществимости цели, приводящий к ситуациям равновесия. Эти ситуации характеризуются тем свойством, что любой игрок, который отклонится от ситуации равновесия (при условии, что остальные игроки не изменят своих стратегий), не увеличит этим своего выигрыша.

В частном случае антагонистических игр принцип осуществимости цели превращается в так называемый принцип максимина (отражающий стремление максимизировать минимальный выигрыш).

Принципы оптимальности (первоначально выбиравшиеся интуитивно) выводятся на основании некоторых заранее задаваемых их свойств, имеющих характер аксиом. Существенно, что различные применяемые в И. т. принципы оптимальности могут противоречить друг другу.

Теоремы существования в И. т. доказываются преимущественно теми же неконструктивными средствами, что и в других разделах математики: при помощи теорем о неподвижной точке, о выделении из бесконечной последовательности сходящейся подпоследовательности и т. п., или же, в весьма узких случаях, путём интуитивного указания вида решения и последующего нахождения решения в этом виде.

Фактическое решение некоторых классов антагонистических игр сводится к решению дифференциальных и интегральных уравнений, а матричных игр - к решению стандартной задачи линейного программирования (См. Линейное программирование). Разрабатываются приближённые и численные методы решения игр. Для многих игр оптимальными оказываются так называемые смешанные стратегии, тоесть стратегии, выбираемые случайно (например, по жребию).

И. т., созданная для математического решения задач экономического и социального происхождения, не может в целом сводиться к классическим математическим теориям, созданным для решения физических и технических задач. Однако в различных конкретных вопросах И. т. широко используются весьма разнообразные классические математические методы. Кроме этого, И. т. связана с рядом математических дисциплин внутренним образом. В И. т. систематически и по существу употребляются понятия теории вероятностей. На языке И. т. можно сформулировать большинство задач математической статистики. Необходимость при анализе игры количественного учёта неопределённости предопределяет важность и тем самым связь И. т. с теорией информации и через её посредство - с кибернетикой. Кроме того, И. т., будучи теорией принятия решений, может рассматриваться как существенная составная часть математического аппарата операций исследования (См. Операций исследование).

И. т. применяется в экономике, технике, военном деле и даже в антропологии. Основные трудности практического применения И. т. связаны с экономической и социальной природой моделируемых ею явлений и недостаточным умением составлять такие модели на количественном уровне.

К 70-м гг. 20 в. число публикаций по научным вопросам И. т. достигло многих сотен (в том числе несколько десятков монографий). Курсы по И. т. читаются во многих высших учебных заведениях для студентов математических и экономических специальностей (в СССР - с 1956).

Международные конференции по И. т. проходили в Принстоне (1961), Иерусалиме (1965), Вене (1967) и Беркли (1970). Всесоюзные конференции по И. т. состоялись в Ереване (1968) и Вильнюсе (1971).

Лит.: Нейман Дж. Моргенштерн О., Теория игр и экономическое поведение, пер. с англ., М., 1970; Льюс Р., Райфа Х., Игры и решения, пер. с англ., М., 1961; Карлин С., Математические методы в теории игр, программировании и экономике, пер. с англ., М., 1964; Воробьев Н. Н., Современное состояние теории игр, "Успехи математических наук", 1970, т. 25, № 2(152), с. 80-140; Оуэн Г., Теория игр, пер. с англ., М., 1971; Contributions to the theory of games, v.1-4, Princeton, 1950-59; Advances in game theory, Princeton, 1964.

Н. Н. Воробьев.

Википедия

Game (disambiguation)

A game is a recreational activity with a set of rules.

Game or games may also refer to:

Примеры употребления для game
1. A game known as the ‘pass–out game,‘ the ‘fainting game,‘ the ‘tingling game,‘ or the ‘something dreaming game‘ _ to name a few," the release said.
2. The result was less game–changing than small–game hunting.
3. Ginbili‘s struggles in Game 3 carried right into Thursday‘s game.
4. World Cup game and in every Olympic gold–medal game.
5. "It was a market game, a money game, a global game, and our workers lost," he said.
Как переводится game на Русский язык